Transcriptional activation of gene expression by Wnt signaling is driven by the association of beta-catenin with TCF/LEF factors and the recruitment of transcriptional coactivators. It has been shown that the LIM protein FHL2 and the acetyltransferase CBP/p300 individually stimulate beta-catenin transactivating activity and that beta-catenin is acetylated by p300. Here, we report that FHL2 and CBP/p300 synergistically enhanced beta-catenin/TCF-mediated transcription from Wnt-responsive promoters and that the acetyltransferase activity of CBP/p300 was involved in the cooperation. CBP/p300 interacted directly with FHL2, predominantly through the CH3 domain but not the histone acetyltransferase domain, and different regions of CBP/p300 were involved in FHL2 and beta-catenin binding. We provided evidence for the formation of a ternary complex by FHL2, CBP/p300, and beta-catenin and for colocalization of the three proteins in the nucleus. In murine FHL2(-/-) embryo fibroblasts, the transactivation activity of beta-catenin/TCF was markedly reduced, and this defect could be restored by exogenous expression of FHL2. However, CBP/p300 were still able to coactivate the beta-catenin/TCF complex in FHL2(-/-) cells, suggesting that FHL2 is dispensable for the coactivator function of CBP/p300 on beta-catenin. Furthermore, we found that FHL2 significantly increased acetylation of beta-catenin by p300 in vivo. Finally, we showed that FHL2, CBP/p300, and beta-catenin could synergistically activate androgen receptor-mediated transcription, indicating that the synergistic coactivator function is not restricted to TCF/LEF.