A new poly(amidoamine) dendrimer from second generation whose periphery comprises sixteen fluorescent 4-N,N-dimethylaminoethylamino-1,8-naphthalimide units has been synthesized and characterized. In DMF, the dendrimer shows sensitivity to the presence of Cu(2+), Fe(3+) and protons. The changes in the fluorescence intensity of the material are in opposite directions if acids or metals are present. Fluorescence enhancements (FE from 5 to 9 depending on solvent) are recorded when the photoinduced electron transfer (PET) originating from the donating amine to the electron accepting naphthalimide is inhibited by the protonation of the N,N-dimethylamino groups. In the case of Cu(2+) cations, a fluorescence quenching (FQ of 6) is first observed, followed by fluorescence partial restoration. In the Fe(3+) case, the same behaviour is observed with a final FE of 2. The successive complexations of these cations by the dendrimer core and by the external rim of the dendrimer may explain the results.