A new three-dimensional treatment planning system (TPS) based on convolution/superposition algorithms (TMS-Radix from HELAX AB, Uppsala, Sweden) was recently installed at the University Hospital in Lund. The purpose of the present study was to design a quality assurance and acceptance testing programme to meet the specific characteristics of this convolution model. The model is based on parametrization of a non-measurable quantity-the polyenergetic pencil beam. However, the verification of the treatment planning model is still dependent on numerous comparisons of measured depth-doses and dose profiles. The test programme was divided in two basic parts: (i) model implementation and beam data consistency and (ii) model performance and limitations in special situations. The first part was scheduled for all photon beam qualities available before they could be used for clinical treatment planning. The second part was performed for selected energies only. The results indicate clearly that the model is well suited for clinical three-dimensional dose planning and that the TPS handles data as expected. For example, calculated depth-doses for open and wedge beams at depths larger than the depth of dose maximum and profiles for open beams shows a very good agreement with measurements. However, depth-dose deviations at shallow depths, especially for high energies, were found. Monitor units calculated by the system were accurate for most fields except for very large fields, where deviations of several per cent were found.