Protein toxins have been immobilized in a galactoside polyacrylate hydrogel in a microarray format. The large pore size and solution-like environment of these novel hydrogels allow for easy penetration of large proteins and detection reagents. Confocal microscopy provided three-dimensional visualization of dye-labeled toxins cross-linked within the gel and of streptavidin-coated quantum dot (QD) fluorophores used to visualize the toxins after incubation with biotinylated anti-toxin antibodies. Fluorescence microscopy was utilized to visualize arrays of toxins detected by a biotinylated antibody and then exposure to streptavidin-conjugated QDs. The intensity of the QD fluorescence was quantified, and binding to two toxins on three types of hydrogels was examined.