Background: Markers of systemic inflammation and LDL cholesterol (LDL-C) have been considered independent risk factors of coronary artery disease (CAD). We examined whether alterations of LDL metabolism not reflected by LDL-C were associated with low-grade inflammation, vascular injury, and CAD.
Methods and results: We studied 739 subjects with stable angiographic CAD and 570 matched control subjects in which CAD had been ruled out by angiography. The association of LDL triglycerides (LDL-TGs) (odds ratio [OR], 1.30; 95% CI, 1.19 to 1.43; P<0.001) with CAD was stronger than that of LDL-C (OR, 1.10; 95% CI, 1.00 to 1.21; P=0.047). The predictive value of LDL-TG for CAD was independent of LDL-C. "Sensitive" C-reactive protein (CRP), serum amyloid A, fibrinogen, interleukin 6, intercellular adhesion molecule-1 (ICAM-1), and vascular adhesion molecule-1 (VCAM-1) increased in parallel to LDL-TG. CRP, ICAM-1, and VCAM-1 were inversely related to LDL-C. To examine whether LDL-TGs were associated with the distribution of LDL subfractions, we studied 114 individuals with impaired fasting glucose, impaired glucose tolerance, or type 2 diabetes mellitus. In subjects with high LDL-TG, LDLs were depleted of cholesteryl esters (CEs), and VLDLs, IDLs, and dense LDLs were significantly elevated.
Conclusions: Alterations of LDL metabolism characterized by high LDL-TG are related to CAD, systemic low-grade inflammation, and vascular damage. High LDL-TGs are indicative of CE-depleted LDL, elevated IDL, and dense LDL. LDL-TG may better reflect the atherogenic potential of LDL than LDL-C.