Fluorescent-labeled molecules have been used extensively for a wide range of applications in biological detection and diagnosis. A new form of highly luminescent and photostable nanoparticles was generated by doping the fluorescent dye tris(2'2-bipyridyl)dichlororuthenium(II)hexahydrate (Rubpy) inside silica material. Because thousands of fluorescent dye molecules are encapsulated in the silica matrix that also serves to protect Rubpy dye from photodamaging oxidation, the Rubpy-dye-doped nanoparticles are extremely bright and photostable. We have used these nanoparticles successfully in various fluorescence labeling techniques, including fluorescent-linked immunosorbent assay, immunocytochemistry, immunohistochemistry, DNA microarray, and protein microarray. By combining the high-intensity luminescent nanoparticles with the specificity of antibody-mediated recognition, ultrasensitive target detection has been achieved. In all cases, assay results clearly demonstrated the superiority of the nanoparticles over organic fluorescent dye molecules and quantum dots in probe labeling for sensitive target detection. These results demonstrate the potential to apply these newly developed fluorescent nanoparticles in various biodetection systems.