Dysregulation of the centrosome duplication cycle has been implicated in tumorigenesis. Our previous work has shown that the human papillomavirus type 16 (HPV-16) E7 oncoprotein rapidly induces aberrant centrosome and centriole duplication in normal human cells. We report here that HPV E7-induced abnormal centriole duplication is specifically abrogated by a small molecule CDK inhibitor, indirubin-3'-oxime (IO), but not a kinase-inactive derivative. Importantly, normal centriole duplication was not markedly affected by IO, and the inhibitory effects were observed at concentrations that did not affect the G1/S transition of the cell division cycle. Depletion of CDK2 by siRNA similarly abrogated HPV E7-induced abnormal centrosome duplication and ectopic expression of CDK2 in combination with cyclin E or cyclin A could rescue the inhibitory effect of IO. IO treatment also reduced the steady-state level of aneuploid cells in HPV-16 E7-expressing cell populations. Our results suggest that cyclin/CDK2 activity is critically involved in abnormal centrosome duplication induced by HPV-16 E7 oncoprotein expression, but may be dispensable for normal centrosome duplication and cell cycle progression.