In order to exploit cyclophilin as a potential target for neurological drug design, we demonstrate in this presentation that several nonimmunosuppressant analogues of cyclosporin A, modified at the various positions in the 'effector' domain, are equipotent nerve growth agents compared to cyclosporin A. Our results suggest that neurotrophic activity of cyclosporin A and its derivatives resides in the binding domain, and binding to cyclophilin and/or inhibiting rotamase activity may be a necessity for neurotrophic effects of cyclophilin ligands.