The actions of the active metabolite of 1,25-(OH)2D3 (1,25-D) are mediated primarily by the vitamin D receptor (VDR), a member of the nuclear receptor family of ligand-activated transcription factors. Although their ligands cause transcriptional activation, many of the ligands also rapidly activate cellular signaling pathways through mechanisms that have not been fully elucidated. We find that 1,25-D causes a rapid, but sustained activation of ERK (extracellular signal-regulated kinase) in bone cell lines. However, the effect of ERK activation on VDR transcriptional activity was cell line-specific. Inhibition of ERK activation by the MEK inhibitor, U0126, stimulated VDR activity in MC3T3-E1 cells, but inhibited the activity in MG-63 cells as well as in HeLa cells. VDR is not a known target of ERK. We found that the ERK target responsible for reduced VDR activity in MC3T3-E1 cells is RXRalpha. MC3T3-E1 cells express lower levels of RXRbeta and RXRgamma than either HeLa or MG-63 cells. Although overexpression of RXRalpha in MC3T3-E1 cells increased VDR activity, U0126 further enhanced the activity. In contrast, overexpression of RXRgamma stimulated VDR activity but abrogated the stimulation by U0126. Thus, although 1,25-D treatment activates ERK in many cell types, subsequently inducing changes independent of VDR, the effects of treatment with 1,25-D on the transcriptional activity of VDR are RXR isoform-specific. In cells in which RXRalpha is the VDR partner, the transcriptional activation of VDR by 1,25-D is attenuated by the concomitant activation of ERK. In cells utilizing RXRgamma, ERK activation enhances VDR transcriptional activity.