Myopia is a common, complex trait with considerable economic and social impact and, in highly affected individuals, ocular morbidity. We performed a classic twin study of 506 unselected twin pairs and inferred the heritability of refractive error to be 0.89 (95% confidence interval 0.86-0.91). A genomewide scan of 221 dizygotic twin pairs, analyzed by use of optimal Haseman-Elston regression methods implemented by use of generalized linear modeling, showed significant linkage (LOD >3.2) to refractive error at four loci, with a maximum LOD score of 6.1 at 40 cM on chromome 11p13. Evidence of linkage at this locus, as well as at the other linkage peaks at chromosomes 3q26 (LOD 3.7), 8p23 (LOD 4.1), and 4q12 (LOD 3.3), remained the same or became stronger after model fit was checked and outliers were downweighted. Examination of potential candidate genes showed the PAX6 gene directly below the highest peak at the 11p13 locus. PAX6 is fundamental to identity and growth of the eye, but reported mutations usually result in catastrophic congenital phenotypes such as aniridia. Haplotype tagging of 17 single-nucleotide polymorphisms (SNPs), which covered the PAX6 gene and had common minor allele frequencies, identified 5 SNPs that explained 0.999 of the haplotype diversity. Linkage and association analysis of the tagging SNPs showed strong evidence of linkage for all markers with a minimum chi 21 of 7.5 (P=.006) but no association. This suggests that PAX6 may play a role in myopia development, possibly because of genetic variation in an upstream promoter or regulator, although no definite association between PAX6 common variants and myopia was demonstrated in this study.