Drop-coating-deposition-Raman (DCDR) is used to detect spectral changes induced by phosphorylation of tyrosine amino acid residues in peptides. Four peptides are investigated, with sequences derived from the human protein-tyrosine kinase, p60c-src, with Y-216, Y-419, and Y-530 phosphorylation sites. Although the spectra of the four peptides are quite different, tyrosine phosphorylation is found to invariably induce the collapse of a doublet at 820-850cm(-1) and the attenuation of a peak around 1205cm(-1). Moreover, amide III band shifts suggest that tyrosine phosphorylation may promote beta sheet formation, particularly in peptides that lack phenylalanine residues. The degree of tyrosine phosphorylation in peptide mixtures is determined using DCDR combined with partial least squares multivariate calibration with a 2% root mean standard error of prediction.