Crystalline alcohol dehydrogenases from the mesophilic bacterium Clostridium beijerinckii and the thermophilic bacterium Thermoanaerobium brockii: preparation, characterization and molecular symmetry

Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):882-6. doi: 10.1107/S0907444996001461.

Abstract

Two tetrameric NADP(+)-dependent bacterial secondary alcohol dehydrogenases have been crystallized in the apo- and the holo-enzyme forms. Crystals of the holo-enzyme from the mesophilic Clostridium beijerinckii (NCBAD) belong to space group P2(1)2(1)2(1) with unit-cell dimensions a = 90.5, b = 127.9, c = 151.4 A. Crystals of the apo-enzyme (CBAD) belong to the same space group with unit-cell dimensions a = 80.4, b = 102.3, c = 193.5 A. Crystals of the holo-enzyme from the thermophilic Thermoanaerobium brockii (NTBAD) belong to space group P6(1(5)) (a = b = 80.6, c = 400.7 A). Crystals of the apo-form of TBAD (point mutant GI98D) belong to space group P2(1) with cell dimensions a = 123.0, b = 84.8, c = 160.4 A beta = 99.5 degrees. Crystals of CBAD, NCBAD and NTBAD contain one tetramer per asymmetric unit. They diffract to 2.0 A resolution at liquid nitrogen temperature. Crystals of TBAD(GI98D) have two tetramers per asymmetric unit and diffract to 2.7 A at 276 K. Self-rotation analysis shows that both enzymes are tetramers of 222 symmetry.