Neurosteroids have been shown to mediate some of their physiological effects via a modulatory site on type A inhibitory gamma-aminobutyric acid (GABAA) receptors. In particular, recent evidence has implicated selective potentiation of the delta subunit of GABAA receptors as an important mediator of in vitro and in vivo neurosteroid activity. However, this has been demonstrated for only a very small number of steroids, so both the generality of this finding, and the structural features of steroids which mediate functional delta-selectivity, are unclear. We have used a potentiometric assay based on fluorescence resonance energy transfer to measure GABA-activated responses in L(tk-) cells stably transfected with human GABAA receptor alpha4beta3delta and alpha4beta3gamma2 receptor subtypes. A set of 28 steroids were evaluated on these subtypes to characterise their functional potency and efficacy in modulating GABA responses. For most compounds there was a clear separation of their efficacy profiles between the receptor subtypes, with a substantially larger maximal response at the alpha4beta3delta receptor. 5beta-Pregnan-3beta-ol-20-one, 5beta-pregnane-3alpha,20beta-diol and 5beta-pregnane-3alpha,17alpha-diol-11,20-dione showed particularly high efficacy for alpha4beta3delta. No compounds were identified that simply inhibited responses at delta-containing receptors. However, 5beta-pregnane-3alpha,17alpha,20beta-triol, prednisolone 21-acetate, 4-pregnene-17alpha,20alpha-diol-3-one-20-acetate, 4-pregnen-20alpha-ol-3-one, and 5beta-pregnane-3alpha,17alpha,21-triol-20-one inhibited, though did not abolish, GABA responses at the alpha4beta3gamma2 subtype, while evoking modest-amplitude potentiation of alpha4beta3delta responses. Molecular modelling on this compound series using principal components analysis indicates that several structural features of steroids underlie their relative functional selectivity for potentiation of delta-containing GABAA receptors.