High-throughput NMR structural biology can play an important role in structural genomics. We report an automated procedure for high-throughput NMR resonance assignment for a protein of known structure, or of a homologous structure. These assignments are a prerequisite for probing protein-protein interactions, protein-ligand binding, and dynamics by NMR. Assignments are also the starting point for structure determination and refinement. A new algorithm, called Nuclear Vector Replacement (NVR) is introduced to compute assignments that optimally correlate experimentally measured NH residual dipolar couplings (RDCs) to a given a priori whole-protein 3D structural model. The algorithm requires only uniform( 15)N-labeling of the protein and processes unassigned H(N)-(15)N HSQC spectra, H(N)-(15)N RDCs, and sparse H(N)-H(N) NOE's (d(NN)s), all of which can be acquired in a fraction of the time needed to record the traditional suite of experiments used to perform resonance assignments. NVR runs in minutes and efficiently assigns the (H(N),(15)N) backbone resonances as well as the d(NN)s of the 3D (15)N-NOESY spectrum, in O(n(3)) time. The algorithm is demonstrated on NMR data from a 76-residue protein, human ubiquitin, matched to four structures, including one mutant (homolog), determined either by x-ray crystallography or by different NMR experiments (without RDCs). NVR achieves an assignment accuracy of 92-100%. We further demonstrate the feasibility of our algorithm for different and larger proteins, using NMR data for hen lysozyme (129 residues, 97-100% accuracy) and streptococcal protein G (56 residues, 100% accuracy), matched to a variety of 3D structural models. Finally, we extend NVR to a second application, 3D structural homology detection, and demonstrate that NVR is able to identify structural homologies between proteins with remote amino acid sequences using a database of structural models.