Mono- and dinuclear complexes of sulfones with the tetrachlorides of group 4

Dalton Trans. 2004 Aug 7:(15):2364-71. doi: 10.1039/B405871B. Epub 2004 Jun 24.

Abstract

The reactions of dialkyl sulfones [R(2)SO(2): R = Me, Et, Ph, R(2)=-(CH(2))(4)-] with the metal tetrachlorides of Group 4 [MCl(4): M = Ti, Zr, Hf] give different products mainly depending on the sulfone/M molar ratio. Compounds of formula [M(2)Cl(8)(R(2)SO(2))(2)][M = Ti, R(2)=-(CH(2))(4)-; M = Zr, R = Et, R = Ph] and [MCl(4)(R(2)SO(2))(2)](sulfone/M = 2)[M = Ti, R = Me; M = Zr, R = Me, R = Ph, R(2)=-(CH(2))(4)-; M = Hf, R = Me, R(2)=-(CH(2))(4)-] have been obtained. By X-ray diffraction methods the dinuclear titanium and zirconium adducts, [Ti(2)Cl(8)(mu-sulfolane-O,O')(2)] and [Zr(2)Cl(8)(mu-Ph(2)SO(2)-O,O')(2)] have been established to contain bridging sulfone and hexacoordinated metal centres, while the mononuclear zirconium complex [ZrCl(4)(Me(2)SO(2))(2)] has cis-monodentate sulfones in a slightly distorted octahedral geometry. The reaction between TiCl(4) and sulfolane (tetrahydrothiophene 1,1-dioxide) in SOCl(2) affords the 1:1 adduct independent of the sulfone/Ti molar ratio. Ligand-exchange and inter-conversion between mononuclear and dinuclear species have been observed by NMR, while the spectral features of the SO(2) moiety have been assigned by IR- and Raman spectroscopies.