Automation of protein purification for structural genomics

J Struct Funct Genomics. 2004;5(1-2):111-8. doi: 10.1023/B:JSFG.0000029206.07778.fc.

Abstract

A critical issue in structural genomics, and in structural biology in general, is the availability of high-quality samples. The additional challenge in structural genomics is the need to produce high numbers of proteins with low sequence similarities and poorly characterized or unknown properties. 'Structural-biology-grade' proteins must be generated in a quantity and quality suitable for structure determination experiments using X-ray crystallography or nuclear magnetic resonance (NMR). The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. The purification procedure must yield a homogeneous protein and must be highly reproducible in order to supply milligram quantities of protein and/or its derivative containing marker atom(s). At the Midwest Center for Structural Genomics we have developed protocols for high-throughput protein purification. These protocols have been implemented on AKTA EXPLORER 3D and AKTA FPLC 3D workstations capable of performing multidimensional chromatography. The automated chromatography has been successfully applied to many soluble proteins of microbial origin. Various MCSG purification strategies, their implementation, and their success rates are discussed in this paper.

Publication types

  • Evaluation Study
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Automation
  • Chromatography, Affinity / methods*
  • Chromatography, Affinity / statistics & numerical data
  • Cloning, Molecular
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Gene Expression
  • Genomics
  • Proteomics / methods*
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / isolation & purification*
  • Software
  • Solubility

Substances

  • Recombinant Proteins