Basic fibroblast growth factor (bFGF): mitogenic activity and binding sites in human breast cancer

J Steroid Biochem Mol Biol. 1992 Sep;43(1-3):87-94. doi: 10.1016/0960-0760(92)90191-k.

Abstract

We investigated binding characteristics of basic fibroblast growth factor (bFGF) on membranes prepared from 4 human breast cancer cell lines and 38 primary BC biopsies. Competitive binding experiments were performed and analyzed using the "Ligand" program. Furthermore bFGF mitogenic activity was measured by [3H]thymidine incorporation into DNA from breast cancer cell lines. The presence of high-affinity binding sites was demonstrated in each cell type (MCF-7: Kd = 0.60 nM; T-47D: Kd = 0.55 nM; BT-20: Kd = 0.77 nM; MDA-MB-231: Kd = 0.34 nM). The presence of these high-affinity binding sites was confirmed with saturation experiments. A second class of low-affinity binding sites was detected in the 2 hormone-independent cells (BT-20: Kd = 2.9 nM; MDA-MB-231: Kd = 2.7 nM). bFGF stimulated the proliferation of MCF-7, T-47D, BT-20 but not MDA-MB-231 cell lines. With competition experiments, binding sites were detectable in 36/38 breast cancers; high-affinity binding sites (Kd less than 1 nM) were present in 19/36 cases and low-affinity binding sites (Kd greater than 2 nM) were present in 29/36 cases (the two classes of binding sites were present in 12 breast cancers). No relation between bFGF binding sites and node involvement, histologic type or grading of the tumor was evidenced. There were negative correlations (Spearman test) between total bFGF binding sites and estradiol receptor (P = 0.05) or progesterone receptor (P = 0.009). The demonstration of (1) bFGF specific binding sites in breast cancer membranes, and (2) bFGF growth stimulation of some breast cancer cell lines indicates that this factor may be involved directly in the growth of some breast cancers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Binding Sites
  • Binding, Competitive
  • Breast Neoplasms / metabolism*
  • Cell Differentiation
  • Cell Division
  • Cell Membrane / metabolism
  • DNA, Neoplasm / biosynthesis
  • Female
  • Fibroblast Growth Factor 2 / metabolism*
  • Humans
  • Kinetics
  • Middle Aged
  • Tumor Cells, Cultured

Substances

  • DNA, Neoplasm
  • Fibroblast Growth Factor 2