We demonstrate two approaches that use the recently developed helium spin-echo technique to measure surface potential energy landscapes. For helium-lithium fluoride (100), we use the selective adsorption phenomenon to obtain the complete experimental band structure of atoms in a corrugated surface potential. For carbon monoxide-copper (001), we measure the diffusion-induced energy broadening in the scattered helium beam and extract properties of the adsorbate-substrate potential. The measurements are made possible by the resolution of our new spectrometer, which improves on existing resolution by three orders of magnitude. We show that it is possible to produce benchmark energy landscapes to assist evaluation and development of first-principles theory in the problematic van der Waals/weak chemisorption regime.