Previous observations reported by our group indicate that 2.45 GHz microwave fields at specific absorption rate (SAR) of 5.6 W/kg reduce the enzyme activity rate of ascorbate oxidase (AO) trapped in liposomes. In this study, we report dose-response studies on these AO containing liposomes irradiated at different SAR values (1.4, 2.8, 4.2, and 5.6 W/kg). No response was observed for SAR below 5.6 W/kg. Liposomes entrapping functional AO in its deglycated form (AO-D) were also used. In this case, no MW related enzyme activity changes were observed, demonstrating a direct involvement of oligosaccharide chains of AO. Furthermore, the catalytic properties of both AO and AO-D were not impaired by MW irradiation, neither in homogeneous solution nor loaded in liposomes, excluding possible changes in the conformation of enzyme as a mechanism. Our results suggest that the oligosaccharide chains of AO are critical to elicit the microwave observed effects on lipid membrane.
Copyright 2004 Wiley-Liss, Inc.