Computerized interpretation of breast MRI: investigation of enhancement-variance dynamics

Med Phys. 2004 May;31(5):1076-82. doi: 10.1118/1.1695652.

Abstract

The advantages of breast MRI using contrast agent Gd-DTPA in the diagnosis of breast cancer have been well established. The variation of interpretation criteria and absence of interpretation guidelines, however, is a major obstacle for applications of MRI in the routine clinical practice of breast imaging. Our study aims to increase the objectivity and reproducibility of breast MRI interpretation by developing an automated interpretation approach for ultimate use in computer-aided diagnosis. The database in this study contains 121 cases: 77 malignant and 44 benign masses as revealed by biopsy. Images were obtained using a T1-weighted 3D spoiled gradient echo sequence. After the acquisition of the precontrast series, Gd-DTPA contrast agent was injected intravenously by power injection with a dose of 0.2 mmol/kg. Five postcontrast series were then taken with a time interval of 60 s. Each series contained 64 coronal slices with a matrix of 128 x 256 pixels and an in-plane resolution of 1.25 x 1.25 mm2. Slice thickness ranged from 2 to 3 mm depending on breast size. The lesions were delineated by an experienced radiologist as well as independently by computer using an automatic volume-growing algorithm. Fourteen features that were extracted automatically from the lesions could be grouped into three categories based on (I) morphology, (II) enhancement kinetics, and (III) time course of enhancement-variation over the lesion. A stepwise feature selection procedure was employed to select an effective subset of features, which were then combined by linear discriminant analysis (LDA) into a discriminant score, related to the likelihood of malignancy. The classification performances of individual features and the combined discriminant score were evaluated with receiver operating characteristic (ROC) analysis. With the radiologist-delineated lesion contours, stepwise feature selection yielded four features and an Az value of 0.80 for the LDA in leave-one-out cross-validation testing. With the computer-segmented lesion volumes, it yielded six features and an Az value of 0.86 for the LDA in the leave-one-out testing.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Breast Neoplasms / classification
  • Breast Neoplasms / diagnosis*
  • Cluster Analysis
  • Female
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Information Storage and Retrieval / methods
  • Magnetic Resonance Imaging / methods*
  • Numerical Analysis, Computer-Assisted
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Signal Processing, Computer-Assisted
  • Subtraction Technique