p300 and cyclic AMP response element-binding protein (CBP) are adenoviral E1A-binding proteins involved in multiple cellular processes, and function as transcriptional co-factors and histone acetyltransferases. Germline mutation of CBP results in Rubinstein-Taybi syndrome, which is characterized by an increased predisposition to childhood malignancies. Furthermore, somatic mutations of p300 and CBP occur in a number of malignancies. Chromosome translocations target CBP and, less commonly, p300 in acute myeloid leukemia and treatment-related hematological disorders. p300 mutations in solid tumors result in truncated p300 protein products or amino-acid substitutions in critical protein domains, and these are often associated with inactivation of the second allele. A mouse model confirms that p300 and CBP function as suppressors of hematological tumor formation. The involvement of these proteins in critical tumorigenic pathways (including TGF-beta, p53 and Rb) provides a mechanistic route as to how their inactivation could result in cancer.