Collagen-induced arthritis (CIA) in mice is accompanied by splenomegaly due to the selective expansion of immature CD11b+ myeloblasts. Both disease manifestations are more pronounced in interferon-gamma receptor knock-out (IFN-gammaR KO) mice. We have taken advantage of this difference to test the hypothesis that the expanding CD11b+ splenic cell population constitutes a source from which osteoclast precursors are recruited to the joint synovia. We found larger numbers of osteoclasts and more severe bone destruction in joints of IFN-gammaR KO mice than in joints of wild-type mice. Osteoclast-like multinucleated cells appeared in splenocyte cultures established in the presence of macrophage colony-stimulating factor (M-CSF) and stimulated with the osteoclast-differentiating factor receptor activator of NF-kappaB ligand (RANKL) or with tumour necrosis factor-alpha (TNF-alpha). Significantly larger numbers of such cells could be generated from splenocytes of IFN-gammaR KO mice than from those of wild-type mice. This was not accompanied, as might have been expected, by increased concentrations of the intracellular adaptor protein TRAF6, known to be involved in signalling of RANKL- and TNF-alpha-induced osteoclast formation. Splenocyte cultures of IFN-gammaR KO mice also produced more TNF-alpha and more RANKL than those of wild-type mice. Finally, splenocytes isolated from immunised IFN-gammaR KO mice contained comparatively low levels of pro-interleukin-1beta (pro-IL-1beta) and pro-caspase-1, indicating more extensive conversion of pro-IL-1beta into secreted active IL-1beta. These observations provide evidence that all conditions are fulfilled for the expanding CD11b+ splenocytes to act as a source of osteoclasts and to be indirectly responsible for bone destruction in CIA. They also provide a plausible explanation for the higher susceptibility of IFN-gammaR KO mice to CIA.