Hepatocyte growth factor-induced proliferation of hepatic stem-like cells depends on activation of NF-kappaB

J Hepatol. 2004 Mar;40(3):391-8. doi: 10.1016/j.jhep.2003.11.001.

Abstract

Background/aims: Hepatocyte growth factor (HGF) regulates proliferation of hepatic stem cells. Transcription factor nuclear factor kappa B (NF-kappaB) has been demonstrated as a key mediator for cell growth regulation. We investigated the role of NF-kappaB in HGF-mediated cellular proliferation responses in a rat liver-derived hepatic stem-like cell line WB-F344.

Methods: Cell proliferation was determined by incorporation of [3H]thymidine. Phosphorylation of ERK1/2, p38 MAPK, Akt and IkappaBalpha by HGF stimulation was detected by Western blotting. NF-kappaB activation was determined by electrophoretic mobility shift assay and NF-kappaB-mediated SEAP reporter assay. NF-kappaB activation was inhibited by treatment with an IkappaBalpha dominant-negative vector or inhibitor BAY-11-7082.

Results: We found that stimulation of WB-F344 cells with HGF promoted cell proliferation and effectively protected WB-F344 cells from apoptosis induced by TNF-alpha. We also observed activation of ERK1/2, p38 MAPK, Akt and NF-kappaB signaling pathways by HGF in WB-F344 cells. HGF-induced cell proliferation was partly blocked by pre-treatment of the cells with inhibitors against MEK1 or p38 MAPK, and completely blocked using an inhibitor for NF-kappaB activity. Furthermore, it was demonstrated that IkappaB mutant that suppressed NF-kappaB activity completely blocked HGF-induced cell proliferation.

Conclusions: NF-kappaB activity is required for HGF-induced proliferation in hepatic stem-like cell line WB-F344, and this activity requires ERK1/2 and p38 MAPK pathways.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Cell Division / drug effects
  • Cell Division / physiology
  • Cell Line
  • DNA / metabolism
  • Hepatocyte Growth Factor / metabolism
  • Hepatocyte Growth Factor / pharmacology
  • Hepatocyte Growth Factor / physiology*
  • Hepatocytes / cytology*
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / metabolism
  • NF-kappa B / physiology*
  • Phosphorylation / drug effects
  • Protein Serine-Threonine Kinases / metabolism
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-akt
  • Rats
  • Stem Cells / cytology*
  • Transcription, Genetic / physiology
  • p38 Mitogen-Activated Protein Kinases

Substances

  • NF-kappa B
  • Proto-Oncogene Proteins
  • Hepatocyte Growth Factor
  • DNA
  • Akt1 protein, rat
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases