The expression of recombinant trypsinogens from different mammalian origins in Escherichia coli typically leads to the formation of insoluble aggregates. This work describes the high level expression of human trypsinogen 1 in E. coli using the T7 expression system. Direct expression of trypsinogen was not possible, but the N-terminal fusion of the first 11 amino acids of the T7 protein 10 resulted in an expression level of 200 mg g(-1) bacterial dry mass. A refolding procedure was optimized, and a method using continuous feed of denatured product was developed. Thus the working concentration of trypsinogen could be raised four-fold, while the yield of active protein could be maintained at 20-35%. The refolded trypsinogen was converted to trypsin by autocatalytic activation, and the utility for the detachment of mammalian cells in culture was proven.