Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities

Mol Cell Biol. 2004 Apr;24(8):3198-212. doi: 10.1128/MCB.24.8.3198-3212.2004.

Abstract

Rrm3p is a 5'-to-3' DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Division / physiology
  • Cell Survival / physiology*
  • DNA Damage
  • DNA Helicases / genetics
  • DNA Helicases / metabolism*
  • DNA Replication*
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism
  • Endonucleases*
  • Genes, cdc*
  • Phenotype
  • Rad51 Recombinase
  • Rad52 DNA Repair and Recombination Protein
  • Recombination, Genetic
  • S Phase / physiology*
  • Saccharomyces cerevisiae / cytology
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / physiology
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*

Substances

  • DNA-Binding Proteins
  • RAD52 protein, S cerevisiae
  • Rad52 DNA Repair and Recombination Protein
  • Saccharomyces cerevisiae Proteins
  • RAD51 protein, S cerevisiae
  • Rad51 Recombinase
  • Endonucleases
  • MUS81 protein, S cerevisiae
  • Rrm3 protein, S cerevisiae
  • DNA Helicases