Immobilized copper(II) affinity chromatography [Cu(II)-immobilized metal affinity chromatography (IMAC)] has been used in proteomics to simplify sample mixtures by selecting histidine-containing peptides from proteolytic digests. This paper examines the specificity of four different support materials with an iminodiacetic acid (IDA) stationary phase in the selection of only histidine-containing peptides in the single step capture-release mode. Three of the sorbents examined were commercially available: HiTrap Chelating HP (agarose), TSK Chelate-5PW, and Poros 20MC. IDA was also immobilized on CIM discs (monolithic glycidylmethacrylate-ethylene dimethacrylate). Tryptic digests of transferrin and beta-galactosidase were used as model samples to evaluate these sorbents. It was found that among the examined matrices, the TSK Chelate-5PW sorbent bound histidine-containing peptides the strongest, while Poros matrix was found to have a high degree of non-specific bindings. Agarose-based columns showed relatively high selectivity and specificity.