This paper deals with the influence of acousto-optic interactions on the displacement measurements performed over transducer array and their effects on the predicted diffraction field. Changes on the temporal/spatial responses and the plane wave decomposition of the displacement are discussed. Modifications made on the directivity pattern are shown. A theoretical analysis of acousto-optic phenomenon, based on the plane wave decomposition of radiated field by the array is developed. Theoretical and experimental results are compared, showing first that waves with phase velocity near the one of the fluid are greatly amplified. Second, the interaction of laser beam with edge wave produced by the vertical size of elements induces a parasitic temporal pulse on the x-t diagram and so an interference pattern in the omega-k diagram. Corrections are proposed to eliminate errors induced by acousto-optic interactions and validated by comparing predicted diffraction field with measurements.