Individual organic compounds can be used as tracers for primary sources of ambient particulate matter (PM) in chemical mass balance receptor models. Previous work has examined PM2.5 only and usually over long sampling periods encompassing entire days or longer. In this study, a high-flow-rate, low-pressure-drop ultrafine particle separator was deployed to collect sufficient mass for organic speciation of ultrafine and accumulation mode aerosol on a diurnal basis. Particles between 0.18 and 2.5 microm in diameter were collected on a quartz-fiber impaction substrate, and ultrafine particles below 0.18 microm were collected downstream on a high-volume filter. Four daily time period samples (morning, midday, evening, and overnight) were sampled over five weekdays to form a weekly average composite for each diurnal period. Sampling was conducted at two sites over two seasons; summer (August) and winter (January) samples were collected at both an urban site near downtown Los Angeles (University of Southern California) and a downwind, inland site in Riverside, CA. Hopanes, used as organic markers for vehicular emissions, were found to exist primarily in the ultrafine mode. Levoglucosan, an indicator of wood combustion, was quantified in both size ranges, but more was present in the accumulation mode particles. An indicator of photochemical secondary organic aerosol formation, 1,2-benzenedicarboxylic acid, was found primarily in the accumulation mode and varied with site, season, and time of day as one would expect for a photochemical product. The atmospheric variations of particulate cholesterol and other organic acids were also considered. By examining the diurnal variation, size-fractionation, and intercorrelations of individual organic compounds, the sources and atmospheric fate of these tracers can be better understood and their utility as molecular markers can be assessed.