Abstract
Technical advances in the imaging of GFP derivatives in living cells have improved our ability to determine the position and dynamics of specific chromatin loci. This approach, combined with genetics and functional assays, has shed new light on how nuclear compartments facilitate gene repression in yeast.
Publication types
-
Research Support, Non-U.S. Gov't
-
Review
MeSH terms
-
Animals
-
Basic Helix-Loop-Helix Transcription Factors
-
Cell Nucleus Structures / metabolism*
-
DNA-Binding Proteins / genetics
-
DNA-Binding Proteins / metabolism
-
Heterochromatin / genetics
-
Heterochromatin / metabolism*
-
Heterochromatin / ultrastructure
-
Interphase / genetics
-
Molecular Biology / methods
-
Repetitive Sequences, Nucleic Acid
-
Saccharomyces cerevisiae Proteins / genetics
-
Saccharomyces cerevisiae Proteins / metabolism
-
Schizosaccharomyces pombe Proteins / genetics
-
Schizosaccharomyces pombe Proteins / metabolism
-
Silent Information Regulator Proteins, Saccharomyces cerevisiae / genetics
-
Silent Information Regulator Proteins, Saccharomyces cerevisiae / metabolism
-
Telomere / physiology*
-
Transcription Factors / genetics
-
Transcription Factors / metabolism
-
Transcription, Genetic
Substances
-
Basic Helix-Loop-Helix Transcription Factors
-
DNA-Binding Proteins
-
ESC1 protein, S pombe
-
Heterochromatin
-
Saccharomyces cerevisiae Proteins
-
Schizosaccharomyces pombe Proteins
-
Silent Information Regulator Proteins, Saccharomyces cerevisiae
-
Transcription Factors
-
high affinity DNA-binding factor, S cerevisiae