Recent evidence supports a role for GATA transcription factors as important signal intermediates in differentiated endothelial cells. The goal of this study was to identify proteins that interact with endothelial-derived GATA transcription factors. Using yeast two-hybrid screening, we identified hematopoietically expressed homeobox (Hex) as a GATA-binding partner in endothelial cells. The physical association between Hex and GATA was confirmed with immunoprecipitation in cultured cells. Hex overexpression resulted in decreased flk-1/KDR expression, both at the level of the promoter and the endogenous gene, and attenuated vascular endothelial growth factor-mediated tube formation in primary endothelial cell cultures. In electrophoretic mobility shift assays, Hex inhibited the binding of GATA-2 to the flk-1/KDR 5'-untranslated region GATA motif. Finally, in RNase protection assays, transforming growth factor beta1, which has been previously shown to decrease flk-1 expression by interfering with GATA binding activity, was shown to increase Hex expression in endothelial cells. Taken together, the present study provides evidence for a novel association between Hex and GATA and suggests that transforming growth factor beta-mediated repression of flk-1/KDR and vascular endothelial growth factor signaling involves the inducible formation of inhibitory Hex-GATA complexes.