Whereas L-arginine is clearly recognized as the precursor for nitric oxide synthesis, and its entry into endothelial cells via system y(+) transport is established, few data exist regarding the acute regulation of this transport process. We specifically investigated the effect of ACh and isoprenaline (Iso) on L-arginine uptake in the human forearm and in cultured bovine aortic endothelial cells (BAEC). Sixteen healthy males were studied. During a steady-state intra-arterial infusion of [(3)H]L-arginine (100 nCi/min), the effects of ACh (9.25 and 37 microg/min), Iso (25-50 and 200 microg/min), and sodium nitroprusside (SNP) (1-2 and 8 microg/min) on forearm plasma flow (FPF), L-[(3)H]arginine uptake, and L-[(3)H]citrulline release were determined. In parallel experiments, the effects of ACh, Iso, and SNP on L-[(3)H]arginine uptake were studied in BAEC. L-Arginine uptake was inversely related to FPF (r = -0.50; P < 0.005). At a similar FPF (ACh 56.82 +/- 9.25, Iso 58.49 +/- 5.56, SNP 57.92 +/- 4.96 ml/min; P = ns), intra-arterial ACh significantly increased forearm uptake of L-[(3)H]arginine (54,655 +/- 8,018 dpm/min), compared with that observed with either Iso (40,517.23 +/- 6,841 dpm/min; P = 0.01) or SNP (36,816 +/- 4,650 dpm/min; P = 0.011). This was associated with increased ACh-induced L-[(3)H]citrulline release compared with Iso and SNP (P = 0.046). Similarly, in BAEC, ACh significantly increased L-[(3)H]arginine uptake compared with control, Iso, or SNP (ACh 12.0 x 10(7) +/- 1.83 x 10(7) vs. control 6.67 x 10(7) +/- 1.16 x 10(7) vs. Iso 7.35 x 10(7) +/- 1.63 x 10(7) vs. SNP 6.01 x 10(7) +/- 1.11 x 10(7) fmol.min(-1).mg(-1) at 300 micromol/l L-arginine; P = 0.043). Taken together, these data indicate that ACh stimulates L-arginine uptake in cultured endothelial cells and in human forearm circulation, indicating the potential for acute modulation of endothelial L-arginine uptake.