Enhanced transmission through subwavelength slit gratings and hole arrays is studied in view of its application in the far-infrared and microwave domains. Because for perfectly conducting gratings, plasmon resonances are not expected to produce an enhanced transmission, other kinds of resonance, such as Fabry-Perot, waveguide-mode, and cavity-mode resonances, are studied. The possibility of reaching 100% transmittivity for some particular wavelengths is established when two superimposed identical gratings are used while each of them transmits approximately 1% off resonance. A similar transmission is obtained with hole arrays. The study of the field map inside the groove region allows our establishing the nature of the resonance, that is involved. Comparison of the bandwidth with respect to the wavelength or incidence given by various kinds of resonance is presented.