Enterohemorrhagic Escherichia coli (EHEC) strains of serogroup O145 are emerging as causes of diarrhea and the hemolytic-uremic syndrome. However, there have been few genetic analyses of this EHEC group. We investigated the serotypes, virulence genes, plasmid profiles, pulsed-field gel electrophoresis (PFGE) patterns, and genetic variability of the fliC and eae genes in 120 EHEC O145 strains isolated from cases of hemolytic-uremic syndrome (n = 24) or diarrhea (n = 96) in Germany between 1996 and 2002. Three isolates belonged to serotype O145:H28, one to serotype O145:H25, and 116 were nonmotile (O145:H(-)). One hundred fourteen of the nonmotile strains shared fliC restriction fragment length polymorphism (RFLP) patterns identical to that of the O145:H28 strains. The remaining two nonmotile strains displayed a fliC-RFLP pattern identical to that of the O145:H25 strain. Each of the 117 strains with the fliC-RFLP(H28) pattern harbored eae gamma, whereas the three strains with the fliC-RFLP(H25) pattern possessed eae beta. Five different stx genotypes, six combinations of plasmid-encoded putative virulence genes, 29 plasmid profiles, and 47 PFGE types were identified. Strains within some of the PFGE types could be further subtyped by means of distinct plasmid profiles. These data demonstrate that the EHEC O145 serogroup is comprised of two different serotypes that possess distinct eae types. The heterogeneity of EHEC O145 strains at the chromosomal and plasmid level, in particular the high diversity in PFGE patterns, provides a basis for molecular subtyping of these pathogens.