In order to test the hypothesis that alteration of cell cycle proteins are involved in the neuronal damage caused by human immunodeficiency virus (HIV), the authors have been studying the effect of chemokines on the CDK/Rb/E2F-1 pathway--which is involved in neuronal apoptosis and differentiation. First, they have asked whether CXCR4, the specific receptor for the chemokine SDF-1 and X4-using gp120s, can regulate Rb and E2F-1 activity in cultures of differentiated rat neurons. Although CCR3 and CCR5 are known to mediate infection of microglia by HIV-1, recent evidence indicate that CXCR4 also play important roles in HIV-induced neuronal injury, and dual-tropic isolates that use CXCR4 to infect macrophages have recently been reported. The authors have focused on two specific brain areas in which CXCR4 is physiologically relevant, i.e., the cerebellum and the hippocampus. So far, the data indicate that changes in the nuclear and cytosolic levels of Rb, which result in the functional loss of this protein, are associated with apoptosis in these neurons, and that SDF-1alpha and gp120IIIB affect this pathway. A summary of the findings are presented.