Synthesis, crystal structure, and spectroscopic characterization of trans-bis[(mu-1,3-bis(4-pyridyl)propane)(mu-(3-thiopheneacetate-O))(3-thiopheneacetate-O)]dicopper(II), [[Cu2(O2CCH2C4H3S)4mu-(BPP)2]]n: from a dinuclear paddle-wheel copper(II) unit to a 2-D coordination polymer involving monatomic carboxylate bridges

Inorg Chem. 2004 Feb 23;43(4):1539-44. doi: 10.1021/ic035251y.

Abstract

From the reaction between a dinuclear paddle-wheel carboxylate, namely [Cu2mu-(O2CCH2C4H3S)4] (1), and the flexible ligand 1,3-bis(4-pyridyl)propane (BPP) a neutral 2-D coordination polymer [[Cu2(O2CCH2C4H3S)4mu-(BPP)2]]n (2) was obtained. Compounds 1 and 2 were characterized by means of elemental analysis, thermal analysis (TG/DSC), vibrational spectroscopy, and electron paramagnetic resonance (EPR). The crystal structure of 2 reveals that each Cu(II) is coordinated by two nitrogen atoms from different BPP ligands and two 3-thiopheneacetate groups within a distorted square planar geometry in a trans-[N, N, O, O] arrangement. The BPP ligand adopts a TG conformation bridging two copper centers giving rise to a 1-D sinusoidal polymeric chain along the crystallographic c axis. Adjacent 1-D chains are extended into a 2-D coordination network through pairs of monatomic carboxylate bridges in direction of the b axis. This bridging mode affords centrosymmetric dimeric units Cu2O2, and therefore, the copper ions are involved in a CuN2O2O' chromophore displaying a (4 + 1) square pyramidal coordination in the resultant 2-D polymeric network. The polycrystalline X-band EPR spectrum of 2 at room temperature is characteristic of a triplet state with nonnegligible zero-field splitting in agreement with the crystal structure. Crystal data for 2: monoclinic, space group P2(1)/c, a = 9.4253(10) A, b = 10.9373(10) A, c = 23.6378(10) A, beta = 98.733(4) degrees, Z = 2.