Intraoperative MR imaging

Magn Reson Imaging Clin N Am. 2003 Aug;11(3):431-47. doi: 10.1016/s1064-9689(03)00059-x.

Abstract

Intraoperative MR imaging has become a safe and effective technology that has revolutionized the way neurosurgery is performed. Benefits include the ability to update data sets for navigational systems, to monitor tumor resections, to adjust the approach to intracranial lesions, and to guide functional and drug or cell delivery procedures. Use of this technique can help avoid inadvertent injury of important anatomic and vascular structures. In addition, complications such as ischemia or hemorrhage can be detected early. Intraoperative MR imaging is particularly useful for ensuring that brain biopsies yield diagnostic tissue and for assessing the completeness of tumor resection. As is true for any new technology, the benefits of intraoperative MR imaging must be examined carefully to guarantee appropriate use. Many neurosurgical procedures do not require real-time image guidance and can be performed safely using current surgical techniques, including microsurgical methods and frameless and frame-based stereotaxy. Other tumor resections, tumor biopsies, and surgical and interventional procedures distinctly benefit from the sophisticated information provided by intraoperative imaging techniques. In surgery for low-grade gliomas, intraoperative MR imaging has found general acceptance, whereas its usefulness to monitor the resection of high-grade gliomas remains controversial. The economic issues related to intraoperative MR imaging cannot be overlooked. The acquisition of an intraoperative MR imaging system is associated with considerable expense, and its performance increases the cost of equipment and the operating time. Despite these additional expenses, intraoperative MR imaging can lead to a potential overall cost reduction in the treatment of certain patients if long-term cure can be achieved, repeat resection can be avoided, or procedure-associated morbidity can be reduced. Although intraoperative MR imaging techniques hold tremendous potential, the definition of their appropriate role in the delivery of successful and cost-effective medical care awaits further study.

Publication types

  • Review

MeSH terms

  • Brain / surgery*
  • Brain Neoplasms / diagnosis
  • Brain Neoplasms / surgery
  • Humans
  • Intraoperative Period
  • Magnetic Resonance Imaging* / instrumentation
  • Magnetic Resonance Imaging* / methods
  • Neuronavigation* / instrumentation
  • Neuronavigation* / methods