Background: New methods for detection of bladder cancer are needed because cystoscopy is both invasive and expensive and urine cytology has low sensitivity. We screened proteins as tumor markers for bladder cancer by proteomic analysis of cancerous and healthy tissues and investigated the diagnostic accuracy of one such marker in urine.
Methods: Three specimens of bladder cancer and healthy urothelium, respectively, were used for proteome differential display using narrow-pH-range two-dimensional electrophoresis. To evaluate the presence of calreticulin (CRT) as detected by Western blotting, we obtained 22 cancerous and 10 noncancerous surgical specimens from transurethral resection or radical cystectomy. To evaluate urinary CRT, we collected 70 and 181 urine samples from patients with and without bladder cancer, respectively. Anti-CRT COOH-terminus antibody was used to detect CRT in tissue and urine.
Results: Proteomic analysis revealed increased CRT (55 kDa; pI 4.3) in cancer tissue. Quantitative Western blot analysis showed that CRT was increased in cancer tissue (P = 0.0003). Urinary CRT had a sensitivity of 73% (95% confidence interval, 62-83%) at a specificity of 86% (80-91%) for bladder cancer in the samples tested.
Conclusions: Proteomic analysis is useful in searching for candidate proteins as biomarkers and led to the identification of urinary CRT. The diagnostic accuracy of urinary CRT for bladder cancer appears comparable to that of Food and Drug Administration-cleared urinary markers, but further studies are needed to determine its diagnostic role.