Correlations in the chemical composition of rural background atmospheric aerosol in the UK determined in real time using time-of-flight mass spectrometry

J Environ Monit. 2004 Feb;6(2):124-33. doi: 10.1039/b311209h. Epub 2004 Jan 21.

Abstract

An aerosol time-of-flight mass spectrometer (ATOFMS) was used to determine, in real time, the size and chemical composition of individual particles in the atmosphere at the remote inland site of Eskdalemuir, Scotland. A total of 51,980 particles, in the size range 0.3-7.4 microm, were detected between the 25th and 30th June 2001. Rapid changes in the number density, size and chemical composition of the atmospheric aerosol were observed. These changes are attributed to two distinct types of air mass; a polluted air mass that had passed over the British mainland before reaching Eskdalemuir, interposed between two cleaner air masses that had arrived directly from the sea. Such changes in the background aerosol could clearly be very important to studies of urban aerosols and attempts at source apportionment. The results of an objective method of data analysis are presented. Correlations were sought between the occurrence of: lithium, potassium, rubidium, caesium, beryllium, strontium, barium, ammonium, amines, nitrate, nitrite, boron, mercury, sulfate, phosphate, fluorine, chlorine, bromine, iodine and carbon (both elemental and organic hydrocarbon) in both fine (d < 2.5 microm) and coarse (d > 2.5 microm) particle fractions. Several previously unreported correlations were observed, for instance between the elements lithium, beryllium and boron. The results suggest that about 2 in 3 of all fine particles (by number rather than by mass), and 1 in 2 of all coarse particles containing carbon, consisted of elemental carbon rather than organic hydrocarbon (although a bias in the sensitivity of the ATOFMS could have affected these numbers). The ratio of the number of coarse particles containing nitrate anions to the number of particles containing chloride anions exceeded unity when the air mass had travelled over the British mainland. The analysis also illustrates that an air mass of marine origin that had travelled slowly over agricultural land can accumulate amines and ammonium.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aerosols / analysis*
  • Agriculture
  • Air Movements
  • Air Pollutants / analysis*
  • Amines / analysis*
  • Mass Spectrometry / methods
  • Particle Size
  • Quaternary Ammonium Compounds / analysis*
  • Seawater
  • United Kingdom

Substances

  • Aerosols
  • Air Pollutants
  • Amines
  • Quaternary Ammonium Compounds