In this article we present results from the simultaneous nonlinear (second harmonic generation and two-photon excitation fluorescence) imaging and voltage clamping of living cells. Specifically, we determine the sensitivity to transmembrane potential of second harmonic generation by ANEP-chromophore styryl dyes as a function of excitation wavelength and dye structure. We have measured second harmonic sensitivities of up to 43% per 100 mV, more than a factor of four better than the nominal voltage sensitivity of the dyes under "one-photon" fluorescence. We find a dependence of voltage sensitivity on excitation wavelength that is consistent with a two-photon resonance, and there is a significant dependence of voltage sensitivity on the structure of the nonchromophore portion of the dyes.