A store-operated calcium channel in Drosophila S2 cells

J Gen Physiol. 2004 Feb;123(2):167-82. doi: 10.1085/jgp.200308982.

Abstract

Using whole-cell recording in Drosophila S2 cells, we characterized a Ca(2+)-selective current that is activated by depletion of intracellular Ca2+ stores. Passive store depletion with a Ca(2+)-free pipette solution containing 12 mM BAPTA activated an inwardly rectifying Ca2+ current with a reversal potential >60 mV. Inward currents developed with a delay and reached a maximum of 20-50 pA at -110 mV. This current doubled in amplitude upon increasing external Ca2+ from 2 to 20 mM and was not affected by substitution of choline for Na+. A pipette solution containing approximately 300 nM free Ca2+ and 10 mM EGTA prevented spontaneous activation, but Ca2+ current activated promptly upon application of ionomycin or thapsigargin, or during dialysis with IP3. Isotonic substitution of 20 mM Ca2+ by test divalent cations revealed a selectivity sequence of Ba2+ > Sr2+ > Ca2+ >> Mg2+. Ba2+ and Sr2+ currents inactivated within seconds of exposure to zero-Ca2+ solution at a holding potential of 10 mV. Inactivation of Ba2+ and Sr2+ currents showed recovery during strong hyperpolarizing pulses. Noise analysis provided an estimate of unitary conductance values in 20 mM Ca2+ and Ba2+ of 36 and 420 fS, respectively. Upon removal of all external divalent ions, a transient monovalent current exhibited strong selectivity for Na+ over Cs+. The Ca2+ current was completely and reversibly blocked by Gd3+, with an IC50 value of approximately 50 nM, and was also blocked by 20 microM SKF 96365 and by 20 microM 2-APB. At concentrations between 5 and 14 microM, application of 2-APB increased the magnitude of Ca2+ currents. We conclude that S2 cells express store-operated Ca2+ channels with many of the same biophysical characteristics as CRAC channels in mammalian cells.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Buffers
  • Calcium / physiology*
  • Calcium Channels / metabolism
  • Calcium Channels / physiology*
  • Cell Line
  • Dialysis
  • Drosophila
  • Drosophila Proteins / metabolism
  • Drosophila Proteins / physiology*
  • Egtazic Acid / analogs & derivatives*
  • Egtazic Acid / pharmacology
  • Patch-Clamp Techniques
  • Thapsigargin / pharmacology

Substances

  • Buffers
  • Calcium Channels
  • Drosophila Proteins
  • Egtazic Acid
  • Thapsigargin
  • 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid
  • Calcium