Expression of ErbB2 enhances radiation-induced NF-kappaB activation

Oncogene. 2004 Jan 15;23(2):535-45. doi: 10.1038/sj.onc.1207149.

Abstract

Her-2/neu (ErbB2) oncogene, the second member of the epidermal growth factor receptor (EGFR) family, encodes a transmembrane tyrosine kinase receptor in Her-2-positive tumors. Accumulating evidences demonstrate that signaling networks activated by EGFR and transcription factor NF-kappaB are associated with cell response to ionizing radiation (IR). The present study shows that overexpression of ErbB2 enhanced NF-kappaB activation induced by IR in human breast carcinoma MCF-7 cells transfected with ErbB2 genes (MCF-7/ErbB2). Stable transfection of dominant-negative mutant IkappaB (MCF-7/ErbB2/mIkappaB) or treatment with anti-ErbB2 antibody, Herceptin, inhibited NF-kappaB activation and radiosensitized MCF-7/ErbB2 cells. Consistent with NF-kappaB regulation, basal and IR-induced Akt, a kinase downstream of ErbB2, was activated in MCF-7/ErbB2 cells and inhibited by Herceptin. To identify specific genes affected by ErbB2-mediated NF-kappaB activation, a group of IR-responsive elements Cyclin B1, Cyclin D1, Bcl-2, Bcl/XL, BAD and BAX were evaluated. Basal levels of prosurvival elements Cyclin B1, Cyclin D1, Bcl-2 and Bcl/XL but not apoptotic BAD and BAX were upregulated in MCF-7/ErbB2 cells with striking enhancements in Bcl-2 and Bcl/XL. IR further induced Cyclin B1 and Cyclin D1 expression that was reduced by Herceptin. Bcl-2 kept a high steady level after Herceptin+IR treatment and, in contrast to control MCF-7/Vector cells, Bcl/XL was inhibited in MCF-7/ErbB2 cells by Herceptin+IR treatment. However, all four prosurvival proteins were downregulated by inhibition of NF-kappaB in MCF-7/ErbB2/mIkappaB cells. These results thus provide evidence suggesting that overexpression of ErbB2 is able to enhance NF-kappaB response to IR, and that a specific prosurvival network downstream of NF-kappaB is triggered by treatments using anti-ErbB2 antibody combined with radiation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Monoclonal / pharmacology
  • Antibodies, Monoclonal, Humanized
  • Apoptosis / drug effects
  • Apoptosis / radiation effects
  • Carrier Proteins / metabolism
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Cell Survival / radiation effects
  • Cyclin B / metabolism
  • Cyclin B1
  • Cyclin D1 / metabolism
  • Enzyme Activation / drug effects
  • Enzyme Activation / radiation effects
  • Humans
  • NF-kappa B / metabolism*
  • Protein Serine-Threonine Kinases*
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-akt
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • Radiation, Ionizing
  • Receptor, ErbB-2 / genetics
  • Receptor, ErbB-2 / metabolism*
  • Trastuzumab
  • bcl-2-Associated X Protein
  • bcl-Associated Death Protein
  • bcl-X Protein

Substances

  • Antibodies, Monoclonal
  • Antibodies, Monoclonal, Humanized
  • BAD protein, human
  • BAX protein, human
  • BCL2L1 protein, human
  • CCNB1 protein, human
  • Carrier Proteins
  • Cyclin B
  • Cyclin B1
  • NF-kappa B
  • Proto-Oncogene Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • bcl-2-Associated X Protein
  • bcl-Associated Death Protein
  • bcl-X Protein
  • Cyclin D1
  • Receptor, ErbB-2
  • AKT1 protein, human
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • Trastuzumab