Induction of drug metabolism enzymes and MDR1 using a novel human hepatocyte cell line

J Pharmacol Exp Ther. 2004 Apr;309(1):303-9. doi: 10.1124/jpet.103.061713. Epub 2004 Jan 13.

Abstract

Induction of drug-metabolizing enzymes and transporters can cause drug-drug interactions and loss of efficacy. In vitro induction studies traditionally use primary hepatocyte cultures and enzyme activity with selected marker compounds. We investigated the use of a novel human hepatocyte clone, the Fa2N-4 cell line, as an alternative reagent, which is readily available and provides a consistent, reproducible system. We used the Invader assay to monitor gene expression in these cells. This assay is a robust, yet simple, high-throughput system for quantification of mRNA transcripts. CYP1A2, CYP3A4, CYP2C9, UGT1A, and MDR1 transcripts were quantified from total RNA extracts from Fa2N-4 cells treated with a panel of known inducers and compared with vehicle controls. In addition, we used enzyme activity assays to monitor the induction of CYP1A2, CYP2C9, and CYP3A4. The Fa2N-4 cells responded in a similar manner as primary human hepatocytes. Treatment with 10 microM rifampin resulted in increases in CYP3A4 mRNA (17-fold) and activity (6-beta-hydroxytestoterone formation, 9-fold); and in CYP2C9 mRNA (4-fold) and activity (4'-hydroxydiclofenac formation, 2-fold). Treatment with 50 microM beta-naphthoflavone resulted in increases in CYP1A2 mRNA (15-fold) and activity (7-ethoxyresorufin O-dealkylation, 27-fold). UGT1A mRNA was induced by beta-naphthoflavone (2-fold), and MDR1 (P-glycoprotein) mRNA was induced by rifampin (3-fold). These preliminary data using a few prototypical inducers show that Fa2N-4 cells can be a reliable surrogate for primary human hepatocytes, and, when used in conjunction with the Invader technology, could provide a reliable assay for assessment of induction of drug-metabolizing enzymes and transporters.

MeSH terms

  • Aryl Hydrocarbon Hydroxylases / biosynthesis
  • Cells, Cultured
  • Child
  • Cytochrome P-450 CYP1A2 / biosynthesis
  • Cytochrome P-450 CYP2C9
  • Cytochrome P-450 CYP3A
  • Cytochrome P-450 Enzyme System / biosynthesis*
  • DNA-Binding Proteins / metabolism*
  • Enzyme Induction
  • Female
  • Hepatocytes / enzymology*
  • Hepatocytes / metabolism
  • Humans
  • Transcription Factors / metabolism*

Substances

  • DNA-Binding Proteins
  • MEF1 protein, human
  • Transcription Factors
  • Cytochrome P-450 Enzyme System
  • CYP2C9 protein, human
  • Cytochrome P-450 CYP2C9
  • Aryl Hydrocarbon Hydroxylases
  • CYP3A protein, human
  • Cytochrome P-450 CYP1A2
  • Cytochrome P-450 CYP3A
  • CYP3A4 protein, human