The presenilin proteins are required for intramembrane cleavage of a subset of type 1 membrane proteins including the Alzheimer's disease amyloid precursor protein. Previous studies indicate presenilin proteins form enzymatically active high molecular mass complexes consisting of heterodimers of N- and C-terminal fragments in association with nicastrin, presenilin enhancer-2 and anterior pharynx defective-1 proteins. Using Blue Native gel electrophoresis (BN/PAGE) we have studied endogenous presenilin 1 complex mass, stability and association with nicastrin, presenilin enhancer-2 and anterior pharynx defective-1. Solubilization of mouse or human brain membranes with dodecyl-d-maltoside produced a 360-kDa species reactive with antibodies to presenilin 1. Presenilin 1 complex levels were high in embryonic brain. Complex integrity was sensitive to Triton X-100 and SDS, but stable to reducing agent. Addition of 5 M urea caused complex dissolution and nicastrin to migrate as a subcomplex. Nicastrin and presenilin enhancer-2 were detected in the presenilin 1 complex following BN/PAGE, electroelution and second-dimension analysis. Anterior pharynx defective-1 was detected as an 18-kDa form and 9-kDa C-terminal fragment by standard SDS/PAGE of mouse tissues, and as a predominant 36-kDa band after presenilin 1 complex second-dimension analysis. Membranes from brain cortex of Alzheimer's disease patients, or from cases with presenilin 1 missense mutations, indicated no change in presenilin 1 complex mobility. Higher molecular mass presenilin 1-reactive species were detected in brain containing presenilin 1 exon 9 deletion mutation. This abnormality was confirmed using cells transfected with the same presenilin deletion mutation.