Tankyrases are recently identified proteins characterized by ankyrin repeats and a poly(ADP-ribose) polymerase (PARP) signature motif. In vertebrates, tankyrases mediate protein-protein interactions via the ankyrin domain. Many partners have been identified that could function in telomere maintenance, signal transduction in vesicular transport, and cell death. To further our knowledge of tankyrases and to study their function in development, we sought and found a tankyrase-related gene in Caenorhabditis elegans that we named pme-5 (poly(ADP-ribose) metabolism enzyme-5). The protein encoded includes a large ankyrin domain and a catalytic PARP domain containing the well-conserved PARP signature sequence and the regulatory region. Unlike other tankyrases, PME-5 lacks a sterile-alpha module (SAM), but has a coiled coil domain which may mediate oligomerization. We also found that pme-5 mRNA is alternatively spliced at the fifth exon, producing a long (PME-5L) and a short (PME-5S) transcript. Both isoforms are constitutively expressed during the life cycle of C. elegans. We also show DNA damage increases expression of pme-5, a response that requires the DNA damage checkpoint gene hus-1. Moreover, DNA damage-induced germ cell apoptosis was slightly increased in pme-5(RNAi) hermaphrodites. Altogether, these data indicate that pme-5 is part of a DNA damage response pathway which leads to apoptosis in C. elegans.