We have recently reported that tyrosine kinase, p56(lck) regulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through tyrosine phosphorylation of IkappaBalpha following hypoxia/reoxygenation (Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 52598-52612). However, the role of hypoxia/reoxygenation (H/R) on ERK1/2-mediated uPA secretion and cell motility and the involvement of p56(lck) and EGF receptor in these processes in breast cancer cells is not well defined. We provide here evidence that H/R induces Lck kinase activity and Lck-dependent tyrosine phosphorylation of EGF receptor in highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. H/R also stimulates MEK-1 and ERK1/2 phosphorylations, and H/R-induced phosphorylations were suppressed by the dominant negative form of Lck (DN Lck, K273R) as well as pharmacological inhibitors of EGF receptor and Lck indicating that EGF receptors and Lck are involved in these processes. Transfection of these cells with wild type Lck or Lck F505 (Y505F) but not with Lck F394 (Y394F) induced phosphorylations of EGF receptor followed by MEK-1 and ERK1/2, suggesting that Lck is upstream of EGF receptor and Tyr-394 of Lck is crucial for these processes. H/R also induced uPA secretion and cell motility in these cells. DN Lck and inhibitors of Lck, EGF receptor, and MEK-1 suppressed H/R-induced uPA secretion and cell motility. To our knowledge, this is the first report that p56(lck) in presence of H/R regulates MEK-1-dependent ERK1/2 phosphorylation and uPA secretion through tyrosine phosphorylation of EGF receptor, and it further demonstrates that all of these signaling molecules ultimately control the motility of breast cancer cells.