Imaging of objects through active electrolocation in Gnathonemus petersii

J Physiol Paris. 2002 Sep-Dec;96(5-6):431-44. doi: 10.1016/S0928-4257(03)00021-4.

Abstract

The weakly electric fish Gnathonemus petersii detects, localizes, and analyzes objects during active electrolocation even in complete darkness. This enables these fish to lead a nocturnal life and find and identify their prey (small insect larvae) on the ground of their freshwater habitat. During active electrolocation, fish produce a series of brief electric signals, electric organ discharges (EOD), with an electric organ in their tail. Each EOD builds up a stable electric field around the fish, which is distorted only by nearby objects. Field distortions lead to changes of the transepidermal electric current flow at a region of the fish's electroreceptive skin surface called the 'electric image'. Within the electric image, locally perceived EODs can be either altered in amplitude or waveform by an object. Fish measure both parameters to assess object properties, such as the capacitive and resistive components of the object's complex impedance. the object's size and shape, and its distance from the fish. None of these object properties can be evaluated in isolation, but have to be inferred during parallel processing of electric image spatial and qualitative parameters. Two anterior skin regions of G. petersii appear to possess particular properties for special electrolocation tasks and we therefore refer to them as 'foveal' regions. Because of its high electroreceptor density, the electric field geometry around it, and its behavioral use, the 'nasal region' between the nares and the mouth at the head of the fish is suggested to be a fovea for long-range guidance and object detection. We propose that the 'Schnauzenorgan', a long and flexible chin appendix covered densely with electroreceptor organs, is a second electroreceptive fovea associated with a short-range (food) identification system. Together, these two electric foveae constitute an effective prey detection and identification system.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Electric Fish / physiology*
  • Electric Organ / physiology*
  • Electric Stimulation / methods
  • Electrophysiology
  • Space Perception / physiology*