Induction of megakaryocytes to synthesize and store a releasable pool of human factor VIII

J Thromb Haemost. 2003 Dec;1(12):2477-89. doi: 10.1111/j.1538-7836.2003.00534.x.

Abstract

von Willebrand factor (VWF) is a complex plasma glycoprotein that modulates platelet adhesion at the site of a vascular injury, and it also serves as a carrier protein for factor (F)VIII. As megakaryocytes are the only hematopoietic lineage to naturally synthesize and store VWF within alpha-granules, this study was performed to determine if expression of a FVIII transgene in megakaryocytes could lead to trafficking and storage of FVIII with VWF in platelet alpha-granules. Isolex selected CD34+ cells from human G-CSF mobilized peripheral blood cells (PBC) and murine bone marrow were transduced with a retrovirus encoding the B-domain deleted form of human FVIII (BDD-FVIII). Cells were then induced with cytokines to form a population of multiple lineages including megakaryocytes. Chromogenic analysis of culture supernatant from FVIII-transduced human cells demonstrated synthesis of functional FVIII. Treatment of cells with agonists of platelet activation (ADP, epinephrine, and thrombin receptor-activating peptide) resulted in the release of VWF antigen and active FVIII into the supernatant from transduced cells. Immunofluorescence analysis of cultured human and murine megakaryocytes revealed a punctate pattern of staining for FVIII that was consistent with staining for VWF. Electron microscopy of transduced megakaryocytes using immunogold-conjugated antibodies colocalized FVIII and VWF within the alpha-granules. FVIII retained its association with VWF in human platelets isolated from the peripheral blood of NOD/SCID mice at 2-6 weeks post-transplant of transduced human PBC. These results suggest feasibility for the development of a locally inducible secretory pool of FVIII in platelets of patients with hemophilia A.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Culture Techniques / methods
  • Cell Lineage / drug effects
  • Cytoplasmic Granules / chemistry
  • Factor VIII / biosynthesis*
  • Factor VIII / genetics
  • Factor VIII / metabolism*
  • Genetic Therapy / methods
  • Hematopoietic Stem Cell Transplantation
  • Hematopoietic Stem Cells / cytology
  • Hematopoietic Stem Cells / metabolism
  • Hemophilia A / drug therapy
  • Humans
  • Megakaryocytes / cytology
  • Megakaryocytes / metabolism*
  • Mice
  • Mice, SCID
  • Protein Transport / drug effects
  • Transduction, Genetic*
  • von Willebrand Factor / metabolism

Substances

  • von Willebrand Factor
  • Factor VIII