Independent dosimetric calculation with inclusion of head scatter and MLC transmission for IMRT

Med Phys. 2003 Nov;30(11):2937-47. doi: 10.1118/1.1617391.

Abstract

Independent verification of the MU settings and dose calculation of IMRT treatment plans is an important step in the IMRT quality assurance (QA) procedure. At present, the verification is mainly based on experimental measurements, which are time consuming and labor intensive. Although a few simplified algorithms have recently been proposed for the independent dose (or MU) calculation, head scatter has not been precisely taken into account in all these investigations and the dose validation has mainly been limited to the central axis. In this work we developed an effective computer algorithm for IMRT MU and dose validation. The technique is superior to the currently available computer-based MU check systems in that (1) it takes full consideration of the head scatter and leaf transmission effects; and (2) it allows a precise dose calculation at an arbitrary spatial point instead of merely a point on the central axis. In the algorithm the dose at an arbitrary spatial point is expressed as a summation of the contributions of primary and scatter radiation from all beamlets. Each beamlet is modulated by a dynamic modulation factor (DMF), which is determined by the MLC leaf trajectories, the head scatter, the jaw positions, and the MLC leaf transmission. A three-source model was used to calculate the head scatter distribution for irregular segments shaped by MLC and the scatter dose contributions were computed using a modified Clarkson method. The system reads in MLC leaf sequence files (or RTP files) generated by the Corvus (NOMOS Corporation, Sewickley, PA) inverse planning system and then computes the doses at the desired points. The algorithm was applied to study the dose distributions of several testing intensity modulated fields and two multifield Corvus plans and the results were compared with Corvus plans and experimental measurements. The final dose calculations at most spatial points agreed with the experimental measurements to within 3% for both the specially designed testing fields and the clinical intensity modulated field. Furthermore, excellent agreement (mostly within +/- 3.0%) was also found between our independent calculation and the ion chamber measurements at both central axis and off-axis positions for the multifield Corvus IMRT plans. These results indicate that the approach is robust and valuable for routine clinical IMRT plan validation.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Validation Study

MeSH terms

  • Algorithms*
  • Computer Simulation
  • Equipment Failure Analysis / methods*
  • Humans
  • Models, Biological*
  • Phantoms, Imaging
  • Quality Assurance, Health Care / methods*
  • Radiation Protection / methods
  • Radiometry / methods*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Radiotherapy, Conformal / instrumentation*
  • Radiotherapy, Conformal / methods*
  • Reproducibility of Results
  • Scattering, Radiation
  • Sensitivity and Specificity