Since the discovery of carbon nanotubes by lijima in 1991, various carbon nanotubes with either a single- or multilayered graphene cylinder(s) have been produced, along with their noncarbon counterparts (for example, inorganic and polymer nanotubes). These nanostructured materials often possess size-dependent properties and show new phenomena related to the nanosize confinement of the charge carriers inside, which leads to the possibility of developing new materials with useful properties and advanced devices with desirable features for a wide range of applications. In particular, carbon nanotubes have been shown to exhibit superior properties attractive for various potential applications, ranging from their use as novel electron emitters in flat-panel displays to electrodes in electrochemical sensors. For many of the applications, it is highly desirable to have aligned/patterned forms of carbon nanotubes so that their structure/property can be easily assessed and so that they can be effectively incorporated into devices. In this Review, we present an overview on the development of aligned and micropatterned nanotubes, with an emphasis on carbon nanotubes.