Objective: To explore the effect of tetramethylpyrazine on learning, memory, and cholinergic system in D-galactose-lesioned mice.
Methods: C57BL/6J mice were given subcutaneous injection of 2% D-galactose for 40 days (100 mg.kg-1.d-1). Normal saline, tetramethylpyrazine (TMP) and Huperzine A (HupA) were given respectively by intragastric administration in different study groups from the third week on. Learning and memory ability were tested by Morris water maze for 5 days at the sixth week. Acetylcholinesterase (AchE) activity, the binding sites (Bmax) and the affinity (KD) of M-cholinergic receptor were determined.
Results: The learning and memory dysfunction, with lowered AchE activity and M-cholinergic receptor binding sites were found in the model group as compared with the normal control group. The tetramethylpyrazine, especially at the dose of 100 mg.kg-1.d-1, could markedly attenuate cognitive dysfunction, while elevate the lowered AchE activity (P < 0.05) and M-cholinergic receptor binding sites (P < 0.005) in the cerebral cortex of mice treated with D-galactose.
Conclusions: The tetramethylpyrazine can significantly improve central cholinergic system function, and thus enhance the learning and memory ability in D-galactose-lesioned mice.